Photovoltaics: An overview of current
and future solar cell technologies




The world is slowly moving towards a sustainable energy future
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This transition is driven by large cost reductions of renewable energy

SOLAR PV MODULE COST
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In 2016 around 75 GW of photovoltaic modules were installed worldwide
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Research in PV is driven by the reduction of cost/kVVh

Investment N Maintenance cost
Levelized cost of a cost Cost for energy storage
electricit - balancin
4 Years of Annual energy ( 8)
: X
operation output

= Further reduction of the PV LCOE is possible via:
= Reduction of cost (further scaling, standardization)
* Increasing performance
* Increasing lifetime
* Increasing energy yield
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Photovoltaic solar cells are semiconductor p-n diodes working under

illumination

Energy conversion efficiency =

P cell / P incoming light

front contact

n-type
silicon

N junction

p-type

hack contact silicon

Solar cell =
Diode under
iHlumination




Photovoltaic solar cells are semiconductor p-n diodes optimized to absorb
as much light as possible and collect as much current as possible

Absorption of light:

Absorption coefficient

" Reflection, transmission

Separation of excess carriers = make them move in a different direction

Junctions
Electrical field in depletion layer

Diffusion length (minority carrier lifetime, diffusion constant, mobility) or drift length (minority carrier
lifetime, electrical field, mobility)

Transport

front contact

n-type
silicon

Resistance of the base and emitter

Contact resistance Solar cell =

Diode under
iHlumination

pn junction

ptype
silican

,/’i
S hack contact
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Crystalline-silicon technology is dominating the PV market

PV Cell Production by Technology (MW)
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The small share of thin-film PV is based on CdTe and CIGS technology
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The value chain of crystalline silicon photovoltaics

Polysilicon

Ingots

Wafers

Solar Cells

2 types of crystalline-silicon:

- Monocrystalline
- Multicrystalline

PV Modules




Crystalline-silicon wafer formation




From metallurgical grade silicon to electronic-grade polysilicon
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Fisher et al,, Proceedings of the IEEE, pp. 1454-1474 (2012) "
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The polysilicon is molten in large furnaces and Czochralski ingots are
pulled from the melt

Graphite/Quartz-
Crucible

Birection of pull >

iSilsingle crystal
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Individual silicon wafers are formed by wire-sawing the ingots

MG-Si

//, y 1
_ﬁ Wafer slicing proce?s

o Source: Osaka Fuji Corp., www.ofic.co.jp

Cz pu
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) Cropped /
lling  shaped ingot

Meyer Burger’s diamond saw system
Source: Cleantechnica.com

SEM of diamond-coated wire
Source: www.ceramicindustry.com



MG-Si

Q/@ﬂQ

Poly Si rods

Cz pulling




The resulting wafers can then be processed into devices m
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MG-Si

Poly Si rods

. Cropped /
Cz pulling  shaped ingot

Module

Conventional Si wafer production process involves many energy-intensive
and expensive processes (Siemens process, Cz process, kerf loss during
wafering,...)



Crystalline-silicon solar cell processing




The Al-Back Surface Field (Al-BSF) cell is the industrial standard today
ARC SiN, front-side metallization

Individual wafer (mono or multi)

| |

Saw damage removal + texturing

, POCI, Diffusion
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The efficiency of industrial AI-BSF solar cells has been improved

substantially over the years
ARC SiN, front-side metallization

Courtesy of Fraunhofer ISE

Al-BSF

Average efficiency in production:

Multi ~ 16-18 %, Mono ~ 17-20 %
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Fabian Fertig et al "Mass Production of p-Type Cz Silicon Solar Cells ... "

7t Silicon PV, Freiburg, Germany, April 3, 2017



The efficiency of industrial AI-BSF solar cells is limited due to the full-area
metallized rear side

)

ARC SiN, front-side metallization X 99
21.5 - cell concept -
210 _ A AI-BSF ;
20.5 ' Close to stagnation 7
200 F E

Courtesy of Fraunhofer ISE

Average cell conversion efficiency

Al-BSF 19‘5:- E
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18.5F ]

The whole rear silicon surface is 180k ]
in direct contact with Aluminium 175k 3
| 170 ottt et
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This leads to high recombination losses NN N N N N NN N
ﬁ at the rear of the device

7 Silicon PV, Freiburg, Germany, April 3, 2017

©cean Cross €roun

Fabian Fertig et al "Mass Production of p-Type Cz Silicon Solar Cells ... "



The PV industry is currently making the switch from Al-BSF to PERC-like
solar cells

ARC SiN, front-side metallization

“Standard cell”
Al-BSF

Courtesy of Fraunhofer ISE

Al-BSF

ARC SiN, front-side metallization “PERC cell”

Passivated rear contact

Two extra steps:
IR - Dielectric passivation on rear

Courtesy of Fraunhofer ISE - Local contact opening on rear

Local contacts
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The switch to PERC cells allows the industry to continue to increase the

cell efficiency year by year -
§ 22.0
Q.ANTUM = PERC cell of Hanwha Q Cells g
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Local contacts
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The efficiency of PERC cells is limited by contact recombination

ARC SiN, front-side metallization

( dielectric

Courtesy of Fraunhofer ISE
Local contacts

Further improvements possible by using
passivating contacts, using to n-type silicon
wafers and going to back-contact solar
cells.
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The world record silicon solar cell efficiency was obtained with a

heterojunction back-contact device
AR layer

/ Front a-Si passivation ] -

A - n-type crystalline silicon absorber

- emitter and BSF regions at rear made by a-Si:H
- all contacts at rear side
- less shadowing losses on front

- more complicated processing required

NN Y Rl World record efficiency obtained with this cell
\ P-a-Si/N:a-Si structure for crystalline silicon:
Electrode pattern

Courtesy of Kaneka
Best cell Jec \/ FF Eta

ocC

[mA/cm?]  [mV] [%] [%]

Kaneka — 180 cm? 425 740 84.7 26.6
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A crystalline silicon solar cell structure roadmap

Average cell conversion efficiency [%]
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Crystalline-silicon module processing




Standard cells for standard modules

FRONT BACK

Ag busbar

Anti reflective coating

Ag finger grid

28

Ag busbar (solderable)
Full-area Al metallization

(non-solderable)



Cell interconnection

* Cell soldered in series connection using
ribbons going from the front to back of
neighboring cells

* Ribbons: Cu core with Sn Pb(Ag) coating with 100-

300um thick, I-3mm wide




Soldering (tabbing) into strings (stringing)




Layup of strings and bussing

Encapsulant (EVA 450um)

Bussing: large Cu tabs
= =» | series connection of 60 cells
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Layup for lamination

Encapsulant (EVA 450um)

Backsheet
(3-layer 350um)
PET/PVF/PA/AI/PVDF/...




Framing and junction box connection

Junction box and ot

Bypass diode

Al frame



Main ways to further improve energy conversion efficiencies and reduce
LCOE of crystalline-silicon modules

Modifying the cell structure for higher cell efficiencies
* PERC cells

Cells with passivated contacts
* IBC cells

Reducing material cost

Thinner wafers

Less use of Silver

Reduction of module material cost

Increasing energy yield
ﬁ ® Bifacial cells (albedo effect)

] . I
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The value chain of inorganic thin-film photovoltaics

Same/similar process steps with same/similar cost / m?2

¥ L S

| D S

. 2
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Large glass
. Laser Laser PVD Laser
(or flexible) PVD Module .
Substrate —> Tco Pafter- Absorber Pa?ter- Back Pat.:tern- Finish Installation
ning ning Contact ing
(0.7 - 5.7m?)
I Courtesy of W. Hoffman, ASE

Main absorber types in production:

- (Thin-film Silicon)

- CdTe

- CIGS (CulnGaSe)

Different processes and material cost for absorber formation




Thickness (microns)
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Thin-film photovoltaics typically uses very thin absorber layers and can be
made flexible and light-weight
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-

decreasing crystalline volume fraction

Based on amorphous silicon (1.6-1.8 eV) and microcrystalline silicon (1.1 eV)

State-of-the-art thin-film silicon solar cells
grown by PECVD

columnar growth
substrate

stalionary
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State-of-the-art thin-film silicon solar cells

triple-junction

e.g. a-Si:H/a-SiGe:H/ double-junction
uc-Si:H micromorph

/ / / a-Si:H/uc-Si:H
' / /

surface-text
i ZnOnA

2\ WS surface-textured TCO
a-Si:H top '
_ a N Al M 4
7 u a-Si:H absorber .
a-SiGe:H middle absorber mﬁ
uc-Si:H bottom absorber uc-Si:H absorber

e
NS RN

i 14.0% (AIST) 12.7% (AIST)

Efficiency of TF-Si cells too limited
+ Staebler-Wronski effect:
a-Si degrades under light soaking

single-junction
amorphous (a-Si:H)
microcrystalline (uc-Si:H)

surface-textured TCO

] uc-Si:H layers

a-Si: 10.2% (AIST) ol
u-Si: 11.9% (AIST) TU Delft




State-of-the-art CIGS solar cells

Copper Indium
Gallium Diselenide

(CIGS) > AZO - 450nm

o iZn0 - 50nm
B o

> CIGS - 1-2.5um
Mo — 250pm

Glass, Metal Foil,
Plastics

Culn,Ga, ,Se,
Chalcopyrite
__crystal structure
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State-of-the-art CIGS solar cells

Best cell Joc \/ FF Eta

ocC

[mAlcm?] [mV]  [%] [%]

40.7 718 74.3 21.7

Gallium Diselenide
(CIGS)

Solar Frontier — | cm?

AZ0 - 450nm
&P izn0 - 50nm
| : CdS - 50nm

= 10— 250um
\

Glass, Metal Foil,
Plastics

41



Main challenges in CIGS solar cell research

Further increase of efficiency: Alkali post-deposition treatment,
composition grading in absorber layer, surface passivation, ...

Cd-free buffer layers

Closing the gap between lab efficiencies and industrial large-area
efficiencies

Thinner absorber layers and introduction of light trapping

The Indium issue: In is scarce and contributes a few % to module
cost currently

42



State-of-the-art CdTe solar cells

Zinc blende

crystal structure

Best cell \"/

ocC

[mV]

First Solar — | cm? 876

Cadmium
Telluride
(CdTe)
. Sn0,Cd,Sn0, -
" o 0.2-0.5pm
" 0dS-600-2000A

> CdTe - 2-8ym
ZnTe/metal or
graphite/metal

FF Eta
[%] [%]
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Main challenges in CdTe solar cell research

Proving that CdTe modules are not dangerous for health and
environment and can be recycled (Cd is very toxic)

Reduce back-interface recombination to ~ 1000 cm/s

Increase doping density to 10'® while maintaining lifetime ~ 10ns
Optimize absorber thickness

Optimize the concentration and profile of Se

Increase module lifetime

44
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Perovskites in general

Materials with same structure as the mineral CaTiO,

Named after Lev Perovski

* Crystal structure:ABX;
“ A = large cation

B = small cation

" X =anion

Wide variety of characteristics:

Superconducting

Insulating or conducting

Semiconducting
Thermoelectric

Piezoelectric

Magnetic

~
i
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e 46



Perovskite solar cells: a new kid on the block

Inorganic-organic perovskites for
PV: AB X,

where A = organic ammonium
cation, B= Pb, Sn and X=C|, Br, |

* Most common is
methylammonium lead
iodide: CH;NH; Pb I,
Bandgap is typically 1.5-1.6
eV (tunable)

Solution processed or
vapour deposited
(inexpensive)

e
3 47




Perovskite solar cells have a p-i-n device architecture

Back electrode

Hole (electron) transport layer

Thickness Diffusion length
Photoactive layer
d -~ OBHm 'diff > 03 pm
Electron (hole) transport layer
Transparent electrode
Glass
L B N N N
IR s iy e o e Al N o TN g
Incident light Spiro-OMeTAD
| ; CH:NH3PblsxClx
Strong, direct absorber . TIOZ\ 5 ‘ !
' ¥ A4

Effective carrier transport

Glass

Ocean Cross €roun
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Very fast progress in perovskite cell efficiency has been made in recent years

30F

c-Silicon (26.3%)

J/I

N
o

o

[ o——o—o—0—% ==
CdTe (22.1%)

CIGS (22.3%)

L O— O
Perovskite (22.1%)

DSSC (11.9%)

Certified record efficiency (%)
o

Ok

OPV (11.5%)

QDs (11.3%)

200

2005

2010 2015

Year

49

Remaining challenges:
Increase efficiency further
Stability (long life-time)!
Upscaling

Science’s Top 10 breakthrough of 2013
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The theoretical efficiency limit of a single junction silicon solar cell is 29.4%

Auger limit of single-junction silicon solar cell is 29.4%

Limitations by thermalization and transmission

1600 e ————————
T 1400: Thermalisation :
"E 1200-: .3
E. 1000+ Output power 1
§ m" e
g 600 Non absorbed light 5
=
B 400‘ ..
g 200 ]

0

2‘|_c|<::ling




Will this limit mean the end

Average cell conversion efficiency [%]

of silicon solar cell technology?

Passivating
Contacts /

PERC

~ 29 %

T
2010

|
2015

|
2020

52
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Crystalline-silicon based multi-junctions will allow to push efficiencies
above 30%

Multi-junction cell concept:

1600 . v

Thermalisation
= 1400 - "
E
.g 1200 - |

Output
E. 1000 utput power +
8 oo’ Cell 1
E 600 Non absorbed Tunnel Ceuz
i 400 junctions
g 2004 Cell 3
0-

53

i Note: multi-junction with two cells is called tandem



Crystalline-silicon based tandem devices

Light distribution
D et |

AM1.5G (1000 W/m?)

&05007& 900 1100

7. (nm)

Required top cell efficiency (%)

Needed: thin-film top cell with high bandgap,
high efficiency, and minimal sub-bandgap absorption

Ocean Cross Eroun 54

=100
=3

S5 16 17 18 18
Top cell bandgap (eV) ]

® CIGS [24] e ——
10fciS 123 a.SiH [2?1 ® CIGS [26]
CZTS [22]
°
Sf Sb,S, [27]
0 . . . . .
1.5 1.6 1.7 1.8 1.9 2.0

Top cell bandgap (eV)



Perovskite solar cells with tunable bandgap seem suited for tandems

Br content 100% 80% 60% 40% 20% 0%

100

Limited sub-bandgap absorption

60 |

40 |

bsorbance (a. u.)

40% Br:
. Eg = 1.77 eV

//’[ 1 1 1 1 1
S 400 500 600 700 800

oo Bhene 55 Wavelength (nm)
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Silicon-based tandem devices will ensure that silicon solar cell technology

still has a long and bright future

Average cell conversion efficiency [%]

[¥3]
o
|

28

26 -

24 -

22

20 -

18 -

Passivating
Contacts

PERC

Silicon based

|
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|
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| ' | '
2020 2025 2030
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Conclusions




Conclusions

Single-junction crystalline Si is getting closer to its ultimate practical efficiency of ~ 27%
TF-PV technologies (e.g. CIGS, CdTe) are rapidly increasing in efficiency
Perovskites are a very interesting new material with very high potential for PV

Crystalline-silicon based tandem devices will be the way forward to efficiencies above
30% at low cost
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China and USA are the largest PV markets
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€roup

80

70

60

50

40

30

20

10

FIGURE 1: EVOLUTION OF ANNUAL PV INSTALLATIONS (GW - DC)

From 2015 to 2019:

- China grew from |5 to 34 GW
- US grew from 7 to 14,7 GW
- Japan went down from || to 8,6 GW

- Europe went down from 8 to 6 GW
- India doubled to 4 GW

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

® Non I[EA PVPS Countries B IEA PVPS Countries ®USA ®Japan ®cChina
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In many countries PV provides already more than 3% of the electricity demand

FIGURE 4: NATIOMNAL PY PENETRATION IMN 2% OF THE ELECTRICITY DEMAMND
BASED OMN 2016 CAPACITIES
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The levelized cost of PV electricity is dependent on location and on (local)
economical factors

120
London Munich Toulouse Rome Malaga: SAddeiondl PV
100 LCOE with 6%
[ nominal WACC
<
§ 80
- " Additional PV
z LCOE with 4%
g 60 ' : nominal WACC
w
= © ® Additional PV
g LCOE with 2%
3 2 | nominal WACC
'l
o ........ /A2 R R ER SR EER == N . WPV LOOE with
ZRARSR Z2RN2%2 ZRK2%2 2RARZR BZRRKTI Nromn
oS0 < S SO0 O OO0 OO0 S oCoOooo =
NN NN NN NN NN NN N NN NN NN Ny WACC

Source = European Technology & Innovation Platform
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The energy conversion efficiency of solar cells is measured and compared

under standard conditions e
I-V curve of solar cell under illumination

Energy conversion efficiency = P cell / P incoming light I A
Solar spectrum
Mool 77 __ Pwm
uv! visible! infrared —
16 —
[ solar spectrum (Air Mass 1.5, 1000 W/m?) PL
= V, A
E ................ e
‘;; [ Voc
= SESNENES
: R SRR
o M A_—’(D“[
I
SC

l,. = short circuit current
V.. = open circuit voltage
M = maximum powerpoint

400 800 1200 1800 2000 2400

A wavelength [nm]
S Courtesy John Schermer, RUN, NL
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